合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 表面張力儀測試預熱具體方法
> 礦用塵克(C&C)系列除塵劑對大采高工作面截割煤塵的降塵效率影響(一)
> 新型陽離子黏土穩定劑防膨、絮凝及表面張力的性能測試
> 什么是超微量天平,超微量天平使用方法、最小稱量值
> 基于表面張力的開放式微流體平臺,利用微柱重建三維肺部細胞微環境
> 應用熒光顯微鏡研究了蛋白質在氣-水界面的組裝——材料和方法
> 可視化實驗方法研究電場作用下液滴撞擊表面的動態行為(三)
> 高沸點表面活性劑對納米LiBr溶液表面張力沸騰溫度的影響(下)
> 高性能氟碳防水鎖劑(FS-1)對鹽水溶液表面張力的影響
> 微凝膠顆粒在氣液界面處吸附動力學及動態方程研究——結果和討論、結論、致謝!
推薦新聞Info
-
> 單萜萜類驅油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(三)
> 單萜萜類驅油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(二)
> 單萜萜類驅油劑界面張力、配伍性、降黏效果及破乳效果測試與篩選(一)
> 紫檀芪的穩定性增強型抗氧化劑制作備方及界面張力測試——結果與討論、結論
> 紫檀芪的穩定性增強型抗氧化劑制作備方及界面張力測試—— 引言、材料與方法
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結構形成機制(下)
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結構形成機制(中)
> 香豆素取代二乙炔LB膜的組裝、聚合及螺旋結構形成機制(上)
> 電鍍液表面張力、接觸角、流速以及壓強等因素對硅通孔浸潤過程的影響(二)
> 電鍍液表面張力、接觸角、流速以及壓強等因素對硅通孔浸潤過程的影響(一)
烷基-β-D-吡喃木糖苷溶解性、表面張力、乳化性能等理化性質研究(四)
來源:中南大學學報(自然科學版) 瀏覽 902 次 發布時間:2025-03-03
2.7烷基-β-D-吡喃木糖苷的熱穩定性
圖9所示為熱質量損失結果。從圖9可見:烷基吡喃木糖苷6a~6i均只有1個質量損失臺階,起始分解溫度分別為157.9,177.3,172.6,162.3,164.1,169.5,151.7,170.4和208.9℃左右,最大分解速率時的溫度依次為283.2,287.8,296.6,257.9,290.4,286.1,301.9,262.7和339.8℃。糖苷6a~6i熱分解完時的溫度分別為303.1,298.1,329.6,365.5,320.4,340.2,332.0,374.6和356.2℃。總質量損失率為94.9%,89.9%,91.0%,91.9%,95.3%,96.6%,89.6%,88.5%和91.5%。結果表明:合成的烷基吡喃木糖苷在150℃以下是穩定的。
2.8烷基-β-D-吡喃木糖苷的熱致液晶性
作為“軟物質”(soft matter)的生物脂類通過自組裝和自組織過程形成超分子液晶特征的動態變化的生物膜發揮其生物功能作用,葡萄糖腦苷脂等許多具有液晶性能的天然糖脂作為細胞膜的組分與生物活性和疾病的成因有關。本研究利用偏光顯微鏡直接考察不同鏈長的烷基-β-D-吡喃木糖苷6a~6i的熱致液晶行為。當烷基木糖苷處于液晶相時,可依賴其分子間相互作用采用自組裝和自組織模式形成氫鍵強作用的糖環層和憎水弱作用的烷基鏈層依次相間排列,自發組裝成層狀、條紋、鑲嵌、平行排列的織構。
具有液晶特征的化合物因加熱而呈現所謂的“雙熔融轉變”的相變現象,當加熱達到其熔點(p)時,結晶性的固態首先轉變成半透明的液晶態,接著在較高的溫度(p)下轉變成各向同性的清亮的液態。表5所示為木糖苷的相轉變溫度。從表5可見:烷基-β-D-吡喃木糖苷屬于一頭一尾(one head one tail)或一頭組一鏈(one head group-one chain)且呈現多態性的雙親吡喃糖苷分子,在加熱時其相變發生在相對較小的溫度區間,但都出現了液晶相,且當疏水性烷基碳鏈長度為6時,烷基-β-D-吡喃木糖苷相變溫度之差(Δ)較大,其他的都比較接近。在木糖苷中,烷基有助于提升分子取向的穩定性,且這種穩定性對液晶相的生成是必要的。但由于烷基-β-D-吡喃木糖苷為環狀的糖苷只有3個游離羥基,比烷基--D-吡喃葡萄糖苷少了親水性頭部的糖環上的羥甲基,也比木糖醇的十二烷基單醚少了1個游離的羥基,清亮點p不高,所以,得到的烷基-β-D-吡喃木糖苷具有液晶相,但相變溫度范圍(?=p?p)較窄,液晶相的穩定性較弱。
表5木糖苷的相轉變溫度
3結論
1)三氯乙酰亞胺酯法具有高度立體選擇性、克服了溴代糖法存在的重金屬污染的弊端,采用此法,以木糖為原料,通過全乙酰化、選擇性1-位脫保護、轉變成三氯乙酰亞胺酯、偶聯、脫保護共計5步反應,合成了9種烷基-β-D-吡喃木糖苷(6a~6i),并系統地測定了其溶解性、溶解焓、表面張力、乳化性、發泡力、泡沫穩定性、熱穩定性及熱致液晶性。
2)所合成的烷基-β-D-吡喃木糖苷(6a~6i)在水中的溶解性比較好,且糖苷6d(=7)和糖苷6e(=8)的溶解焓最大。糖苷6e(=8)和6f(=9)能使表面張力下降到較低值,表面活性較強,糖苷6e(=8)使表面張力降低到最低值,即能力最強;糖苷6f(=9)使表面張力下降到一定值時所需的濃度最小,即效率最高。糖苷6f(=9)對苯和菜籽油的乳化能力最強。糖苷6e(=8)和6f(=9)的起泡力和泡沫穩定性均較好。
3)所合成的烷基-β-D-吡喃木糖苷(6a~6i)在150℃以下是穩定的,且液晶相變溫度范圍較窄。其有關應用、細胞毒性與結構改造等構效關系有待于進一步研究。





